

opositaonline.com
“Elige tu destino · Cambia tu vida · Sé feliz”

Contenidos:

◼ Características y elementos constitutivos.

◼ Sistemas Windows.

◼ Sistemas Unix y Linux.

◼ Sistemas operativos para dispositivos

móviles.

II. Tecnología básica

TEMA 04

SISTEMAS OPERATIVOS

Cuerpo de Técnicos Auxiliares de Informática

de la Administración del Estado

www.facebook.com/opositaonline

youtube.com/opositaonline

Tema II - 04

Sistemas operativos
2

TEMA II - 04.- SISTEMAS OPERATIVOS

CONTENIDOS

1. Características y elementos constitutivos

1.1 Funciones del Sistema Operativo

1.2 Clasificación de los Sistemas Operativos

1.3 Procesos

1.4 Gestión de memoria

2. Sistemas Windows

2.1 Instalación y configuración

2.2 Dominios

2.3 Seguridad: permisos NTFS

2.4 Recursos compartidos

2.5 Instalación y administración del servicio de Cluster

2.6 Administración de Internet Information Services (IIS)

2.7 Instalación y administración de Directorio Activo

2.8 Gestión de objetos y permisos de Directorio Activo

2.9 Administración de Sitios

2.10 Políticas de Seguridad

2.11 Uso de Windows Powershell

2.12 Registro de Windows

2.13 Comandos

Cuerpo de Técnicos Auxiliares de Informática

de la Administración del Estado

opositaonline.com

info@opositaonline.com

3

3. Sistemas Unix y Linux

3.1 Instalación del sistema operativo

3.2 Archivos y directorios

3.3 Usuario root

3.4 Configuración del arranque del sistema operativo

3.5 Herramientas básicas de administración

3.6 Introducción a la administración de sistemas Linux/UNIX

3.7 Sistema de ficheros y gestión de discos

3.8 Tipos de ficheros y procesos

3.9 Administración del software

3.10 Gestión de las comunicaciones

3.11 Configuración y Administración de las Interfaces de Red.

Interconexión TCP/IP

3.12 Shell

3.13 Estructura de la línea de comandos

3.14 Metacaracteres

3.15 Creación de nuevos comandos

3.16 Argumentos y parámetros en los comandos

3.17 La salida de programas como argumentos

3.18 Variables de shell

3.19 Ampliación del redireccionamiento de E/S

3.20 Iteración en los programas de shell

3.21 Introducción a los filtros

3.22 La familia grep

3.23 Otros filtros

3.24 El editor de flujo sed

3.25 El lenguaje de manejo y proceso de patrones awk

4. Sistema macOS

5. Sistemas operativos para dispositivos móviles

“El éxito no se logra solo con cualidades especiales. Es sobre todo, un trabajo de constancia, de método y de

organización” - J.P. Sergent (Pintor)

Tema II - 04

Sistemas operativos

4

www.facebook.com/opositaonline

youtube.com/opositaonline

1. Estructuras fundamentales de datos. Organizaciones de ficheros

Un sistema operativo es un programa o conjunto de programas que actúa como
intermediario entre el usuario y el hardware del ordenador, gestionando los recursos
del sistema y optimizando su uso.

El sistema operativo es en sí mismo un programa, pero un programa muy especial y
quizás el más complejo e importante. Cuando se conecta un ordenador se carga parte
del sistema operativo en la memoria y se ejecuta. El sistema operativo despierta al
ordenador y hace que reconozca a la CPU, la memoria, las unidades de disco y cualquier
otro dispositivo conectado a ella, como el teclado, el ratón, la impresora, etc.,
verificando así que no existan errores de conexión y que todos los dispositivos se han
reconocido y trabajan correctamente.

El sistema operativo presenta al usuario la máquina, de una forma más fácil de manejar y
programar, que el hardware que está por debajo, es decir, un usuario normal,
simplemente abre los ficheros que grabó en un disco, sin preocupase por la disposición
de los bits en el medio físico, los tiempos de espera del motor del disco, la posición de un
cabezal, el acceso de otros usuarios, etc.

El S.O. como intermediario entre los usuarios y el HW

1.1. Funciones del Sistema Operativo

A continuación, se muestran las funciones principales que realiza todo sistema
operativo:
 Control de la ejecución de los programas: para ello, acepta los trabajos, administra

la manera en que se realizan, les asigna los recursos y los conserva hasta su
finalización.

 Administración de periféricos: coordinando y manipulando los dispositivos
conectados al ordenador.

 Gestión de permisos y de usuarios: adjudica los permisos de acceso a los usuarios y
evita que las acciones de uno afecten el trabajo que está realizando otro.

 Control de concurrencia: establece prioridades cuando diferentes procesos
solicitan el mismo recurso.

 Control de errores: gestiona los errores de hardware y la pérdida de datos.
 Administración de memoria: asigna memoria a los procesos y gestiona su uso.

Cuerpo de Técnicos Auxiliares de Informática

de la Administración del Estado

opositaonline.com

info@opositaonline.com

5

 Control de seguridad: debe proporcionar seguridad tanto para los usuarios como
para el software y la información almacenada en los sistemas.

En concordancia con estas funciones principales, es posible analizar la estructura de un
sistema operativo en cinco niveles. Los primeros dos niveles entrarían dentro de la
parte del sistema operativo dependiente del hardware, el resto de los niveles
pertenecen a la parte portable del mismo.

Cada uno de los niveles se comunica con el inmediatamente inferior y superior
coordinando sus funciones.
 Nivel 1 - Gestión del procesador: en este nivel se encuentra la parte del sistema

operativo encargada de la gestión de la
CPU.

 Nivel 2 - Gestión de memoria: este nivel
es el encargado de repartir la memoria
disponible entre los procesos. Se realizan
funciones de asignación y liberación de
memoria, y el control de violación de
acceso a zonas de memoria no
permitidas.

 Nivel 3 - Gestión de procesos: este nivel
es el encargado de la creación y
destrucción de los procesos, intercambio
de mensajes y detección y arranque de
los mismos.

 Nivel 4 - Gestión de dispositivos: en este nivel se realiza la gestión de las
entradas/salidas (E/S) en función de los dispositivos existentes. Entre otras, se
encarga de las funciones de creación de procesos de E/S, asignación y liberación de
dispositivos E/S, y planificación de la E/S.

 Nivel 5 - Gestión de la información: el objetivo de este nivel es el de gestionar el
espacio de nombres lógicos, utilizados para simplificar el acceso a los recursos, ya
que mediante estos se sustituyen rutas de acceso que pueden ser muy largas y
difíciles de recordar por un solo nombre, encargándose el sistema operativo, de
forma totalmente transparente para el usuario, de realizar esa búsqueda de ruta.
Otro de sus cometidos es la protección de la información realizando funciones de
creación y destrucción de ficheros y directorios, apertura y cierre de ficheros,
lectura y escritura de ficheros y protección de acceso.

1.2. Clasificación de los sistemas operativos

En este apartado se describirán las características que clasifican a los sistemas
operativos, básicamente se cubrirán tres clasificaciones:

1. Sistemas operativos por su estructura (visión interna),
2. Sistemas operativos por los servicios que ofrecen y, finalmente,
3. Sistemas operativos por la forma en que ofrecen sus servicios (visión externa).

Sistemas Operativos por su estructura

Se deben observar dos tipos de requisitos cuando se construye un sistema operativo, los
cuales son:
 Requisitos de usuario: sistema fácil de usar y de aprender, seguro, rápido y

adecuado al uso al que se le quiere destinar.

Tema II - 04

Sistemas operativos

6

www.facebook.com/opositaonline

youtube.com/opositaonline

 Requisitos del software: donde se engloban aspectos como el mantenimiento,
forma de operación, restricciones de uso, eficiencia, tolerancia frente a los errores
y flexibilidad.

A continuación, se describen las distintas estructuras que presentan los actuales
sistemas operativos para satisfacer las necesidades que de ellos se quieren obtener.

ESTRUCTURA MONOLÍTICA

Es la estructura de los primeros sistemas operativos constituidos fundamentalmente
por un solo programa compuesto de un conjunto de rutinas entrelazadas de tal forma
que cada una puede llamar a cualquier otra (ver figura siguiente). Las características
fundamentales de este tipo de estructura son:
 Construcción del programa final a base de módulos compilados separadamente

que se unen a través del compilador.
 Buena definición de parámetros de enlace entre las distintas rutinas existentes,

que puede provocar mucho acoplamiento.
 Carecen de protecciones y privilegios al entrar a rutinas que manejan diferentes

aspectos de los recursos de la computadora, como memoria, disco, etc.

Generalmente están hechos a medida, por lo que son eficientes y rápidos en su
ejecución y gestión, pero por lo mismo carecen de flexibilidad para soportar diferentes
ambientes de trabajo o tipos de aplicaciones.

ESTRUCTURA JERÁRQUICA

A medida que fueron creciendo las necesidades de los usuarios y se perfeccionaron los
sistemas, se hizo necesaria una mayor organización del software, del sistema operativo,
donde una parte del sistema contiene “subpartes” y se
organizan en forma de niveles.

Se dividió el sistema operativo en pequeñas partes, de tal
forma que cada una de ellas estuviera perfectamente definida
y con un claro interface con el resto de elementos.

Se constituyó una estructura jerárquica o de niveles en
los sistemas operativos, el primero de los cuales fue
denominado THE (Technische Hogeschool, Eindhoven), de
Dijkstra, que se utilizó con fines didácticos (ver figura). Se
puede pensar también en estos sistemas como si fueran
`multicapa'. Multics y Unix pertenecen a esta categoría.

Cuerpo de Técnicos Auxiliares de Informática

de la Administración del Estado

opositaonline.com

info@opositaonline.com

7

En esta estructura se basan prácticamente la mayoría de los sistemas operativos
actuales. Otra forma de ver este tipo de sistema es la denominada de anillos
concéntricos.

MÁQUINA VIRTUAL

Se trata de un tipo de sistemas operativos que presentan una interface a cada proceso,
mostrando una máquina que parece idéntica a la máquina real subyacente. Estos
sistemas operativos separan dos conceptos que suelen estar unidos en el resto de
sistemas: la multiprogramación y la máquina extendida. El objetivo de los sistemas
operativos de máquina virtual es el de integrar distintos sistemas operativos dando la
sensación de ser varias máquinas diferentes.

El núcleo de estos sistemas operativos se denomina monitor virtual y tiene como misión
llevar a cabo la multiprogramación, presentando a los niveles superiores tantas
máquinas virtuales como se soliciten. Estas máquinas virtuales no son máquinas
extendidas, sino una réplica de la máquina real, de manera que en cada una de ellas se
pueda ejecutar un sistema operativo diferente, que será el que ofrezca la máquina
extendida al usuario (ver figura siguiente).

Sistemas Operativos por servicios

Esta clasificación es la más usada habitualmente y la más conocida desde el punto de
vista del usuario final.

Tema II - 04

Sistemas operativos

8

www.facebook.com/opositaonline

youtube.com/opositaonline

MONOUSUARIOS

Los sistemas operativos monousuarios son aquellos que soportan a un solo usuario a la
vez, sin importar el número de procesadores que tenga la computadora o el número de
procesos o tareas que el usuario pueda ejecutar en un mismo instante de tiempo.

MULTIUSUARIOS

Los sistemas operativos multiusuarios son capaces de dar servicio a más de un usuario a
la vez, ya sea por medio de varias terminales conectadas a la computadora o por medio
de sesiones remotas en una red de comunicaciones. No importa el número de
procesadores en la máquina ni el número de procesos que cada usuario puede ejecutar
simultáneamente.

MONOTAREAS

Los sistemas monotarea son aquellos que sólo permiten una tarea a la vez por usuario.
Puede darse el caso de un sistema multiusuario y monotarea, en el cual se admiten
varios usuarios al mismo tiempo, pero cada uno de ellos puede estar haciendo solo una
tarea a la vez.

MULTITAREAS

Un sistema operativo multitarea es aquel que permite al usuario estar realizando varias
tareas al mismo tiempo. Por ejemplo, puede estar editando el código fuente de un
programa durante su depuración mientras compila otro programa, a la vez que está
recibiendo correo electrónico en un proceso en background. Es común encontrar en
ellos interfaces gráficas orientadas al uso de menús y el ratón, lo cual permite un rápido
intercambio entre las tareas para el usuario, mejorando su productividad.

UNIPROCESO

Un sistema operativo uniproceso es aquel que es capaz de manejar solamente un
procesador de la computadora, de manera que si la computadora tuviese más de uno le
sería inútil.

MULTIPROCESO

Un sistema operativo multiproceso se refiere al número de procesadores del sistema,
que es más de uno y éste es capaz de usarlos todos para distribuir su carga de trabajo.
Generalmente estos sistemas trabajan de dos formas: simétrica o asimétricamente:
 Cuando se trabaja de manera asimétrica, el sistema operativo selecciona a uno de

los procesadores el cual jugará el papel de procesador maestro y servirá como
pivote para distribuir la carga a los demás procesadores, que reciben el nombre de
esclavos. El maestro ejecuta el código del S.O. y el resto ejecutan trabajos de
usuario.

 Cuando se trabaja de manera simétrica, los procesos o partes de ellos (threads)
son enviados indistintamente a cualquiera de los procesadores disponibles,
teniendo, teóricamente, una mejor distribución y equilibrio en la carga de trabajo
bajo este esquema.

Cuerpo de Técnicos Auxiliares de Informática

de la Administración del Estado

opositaonline.com

info@opositaonline.com

9

Sistemas Operativos por la forma de ofrecer sus servicios

Esta clasificación también se refiere a una visión externa, que en este caso se refiere a la
del usuario, el cómo accede a los servicios. Bajo esta clasificación se pueden detectar
dos tipos principales: sistemas operativos de red y sistemas operativos distribuidos.

SISTEMAS OPERATIVOS DE RED

Los sistemas operativos de red se definen como aquellos que tienen la capacidad de
interactuar con sistemas operativos en otras computadoras por medio de un medio de
transmisión con el objeto de intercambiar información, transferir archivos, ejecutar
comandos remotos… El punto crucial de estos sistemas es que el usuario debe saber la
sintaxis de un conjunto de comandos o llamadas al sistema para ejecutar estas
operaciones, además de la ubicación de los recursos que desee acceder.

SISTEMAS OPERATIVOS DISTRIBUIDOS

Los sistemas operativos distribuidos abarcan los servicios de los de red, logrando
integrar recursos (impresoras, unidades de respaldo, memoria, procesos, unidades
centrales de proceso) en una sola máquina virtual que el usuario accede en forma
transparente. Es decir, ahora el usuario ya no necesita saber la ubicación de los
recursos, sino que los conoce por nombre y simplemente los usa como si todos ellos
fuesen locales a su lugar de trabajo habitual.

1.3. Procesos

Dentro de las operaciones más básicas y, a la vez, más complejas de nuestro ordenador
encontramos los procesos. Siempre que le pidamos a nuestro equipo que haga algo, los
procesos asumirán el trabajo y de esta manera el microprocesador ejecutará el plan que
indique el sistema operativo mediante los procesos.

Desde el punto de vista del sistema operativo, un proceso es la entidad mínima
individualmente planificable, consta de código (instrucciones máquina y llamadas al
S.O.) y datos y se caracteriza por sus atributos (prioridad, permisos de acceso, …) y
estado dinámico.

Un proceso es un concepto manejado por el sistema operativo que consiste en el
conjunto formado por:
 Las instrucciones de un programa destinadas a ser ejecutadas por el

microprocesador
 Su estado de ejecución en un momento dado, esto es, los valores de los registros

de la CPU para dicho programa.
 Su memoria de trabajo, es decir, la memoria que ha reservado y sus contenidos.
 Otra información que permite al sistema operativo su planificación.

Esta definición varía ligeramente en el caso de sistemas operativos multihilo, donde un
proceso consta de uno o más hilos, la memoria de trabajo (compartida por todos los
hilos) y la información de planificación. Cada hilo consta de instrucciones y estado de
ejecución.

Tema II - 04

Sistemas operativos

10

www.facebook.com/opositaonline

youtube.com/opositaonline

Los procesos son creados y destruidos por el sistema operativo, que también se debe
hacer cargo de la comunicación entre procesos, pero esto lo hace a petición de otros
procesos. El mecanismo por el cual un proceso crea otro proceso se denomina
bifurcación (fork). Los nuevos procesos son independientes y no
comparten memoria (es decir, información) con el proceso que los
ha creado.

Un proceso también se define como un programa en ejecución.
Cada proceso se compone de un código que se ejecuta y una
estructura de datos, estando ambos cargados en memoria.

No hay que confundir procesos con archivos o programas. Por
ejemplo, un compilador C no es un proceso, pero un compilador C
ejecutándose, será un proceso para el sistema operativo y, por
tanto, le asignará recursos (CPU, memoria, etc.) y controlará su
ejecución.

Se utiliza una estructura denominada bloque de control de
procesos para identificar unívocamente cada proceso y controlar
todos los aspectos de su ejecución.

¿Cómo se ejecuta un proceso?

Es importante señalar que, para que un proceso se ejecute, su secuencia de
instrucciones debe encontrarse en la memoria principal. Además, en todos los sistemas
operativos modernos, se va intercalando la ejecución de distintos procesos, de forma
que se alternan el uso del procesador.

Para saber en qué posición de memoria se encuentra la siguiente instrucción que debe
ejecutarse, el procesador dispone de un registro llamado contador de programa, que irá
cambiando de valor según pase el tiempo. La secuencia de valores que vaya teniendo el
contador de programa podrá apuntar a instrucciones de diferentes procesos.

El procesador ejecutará el código perteneciente a un módulo del sistema operativo,
llamado Distribuidor (en inglés, Dispatcher), cada vez que un proceso haya consumido
su tiempo (medido en ciclos de instrucción) o haya solicitado algún servicio por el que
deba esperar (p. ej. una operación de E/S) para intentar ceder el procesador a otro
proceso.
Podemos definir un ciclo de instrucción como el tiempo que emplea el procesador en
ejecutar una instrucción en lenguaje máquina y, de un modo simplificado, podríamos
dividirlo en dos pasos:
 El ciclo de lectura (en inglés, fetch), que consiste en cargar una instrucción desde

la memoria principal a los registros del procesador
 El ciclo de ejecución (en inglés, execute), que consiste en interpretar la instrucción

(decodificarla) y ejecutarla, enviando las señales adecuadas a los componentes
que deben realizar la operación que indica la instrucción.

Por este motivo, también suele llamarse ciclo de fetch-and-execute o fetch-decode-
execute.

Cuerpo de Técnicos Auxiliares de Informática

de la Administración del Estado

opositaonline.com

info@opositaonline.com

11

Llamamos multitarea o multiprogramación a la capacidad que tienen los sistemas
operativos actuales de alternar el uso del procesador entre distintos procesos. Dada la
velocidad a la que funcionan los procesadores, el usuario tiene la sensación de que los
procesos se ejecutan al mismo tiempo.

Por otro lado, cuando en un sistema informático disponemos de varios procesadores (o
incluso un único procesador con varios núcleos), pueden ejecutarse varios procesos al
mismo tiempo. A esta técnica la llamamos multiproceso o multiprocesamiento. Cuando
todos los procesadores (o núcleos) actúan en igualdad de condiciones, hablamos de
multiproceso simétrico o SMP (del inglés Symmetric Multi-Processing). Cuando el
sistema dispone de procesadores con funciones especializadas, hablamos de
multiproceso asimétrico o AMP (del inglés, Asymmetric Multi-Processing).

La traza de un proceso es la secuencia ordenada de instrucciones que se ejecutan para
dicho proceso. Estudiando el modo en el que se intercalan las trazas de los diferentes
procesos se puede estudiar el comportamiento general del procesador.

Estados de un proceso

El principal trabajo del procesador es ejecutar las instrucciones de máquina que se
encuentran en memoria principal. Para que un programa pueda ser ejecutado, el
sistema operativo crea un nuevo proceso, y el procesador ejecuta una tras otra las
instrucciones del mismo.

En un entorno de multiprogramación, el procesador intercalará la ejecución de
instrucciones de varios programas que se encuentran en memoria. El sistema operativo
es el responsable de determinar las pautas de intercalado y asignación de recursos a
cada proceso.

MODELO DE DOS ESTADOS

El modelo de estados más simple es el de dos estados. En este modelo, un proceso
puede estar ejecutándose o no. Cuando se crea un nuevo proceso, se pone en estado de
No ejecución. En algún momento, el proceso que se está ejecutando pasará al estado
No ejecución y se elegirá otro proceso de la lista de procesos listos para ejecutar para
ponerlo en estado Ejecución.

De esta explicación se desprende que es necesario que el sistema operativo pueda
seguirles la pista a los procesos, conociendo su estado y el lugar que ocupa en memoria.
Además, los procesos que no se están ejecutando deben guardarse en algún tipo de
cola mientras esperan su turno para ejecutar.

http://www.monografias.com/trabajos34/el-trabajo/el-trabajo.shtml
http://www.monografias.com/trabajos5/sisope/sisope.shtml
http://www.monografias.com/trabajos13/memor/memor.shtml
http://www.monografias.com/Computacion/Programacion/
http://www.monografias.com/Computacion/Sistemas_Operativos/
http://www.monografias.com/trabajos11/teosis/teosis.shtml
http://www.monografias.com/trabajos4/refrec/refrec.shtml
http://www.monografias.com/trabajos/adolmodin/adolmodin.shtml
http://www.monografias.com/trabajos14/administ-procesos/administ-procesos.shtml#PROCE
http://somebooks.es/wp-content/uploads/2015/09/cap01-009.png

Tema II - 04

Sistemas operativos

12

www.facebook.com/opositaonline

youtube.com/opositaonline

MODELO DE CINCO ESTADOS

El modelo anterior de dos estados funcionaría bien con una cola FIFO y planificación
por turno rotatorio para los procesos que no están en ejecución, si los procesos
estuvieran siempre listos para ejecutar. En la realidad, los procesos utilizan datos para
operar con ellos, y puede suceder que no se encuentren listos, o que deban esperar
algún evento antes de continuar, como una operación de Entrada/Salida. Es por esto
que se necesita un estado donde los procesos permanezcan bloqueados esperando
hasta que puedan proseguir. Se divide entonces al estado No ejecución en dos estados:
Listo y Bloqueado. Se agregan además un estado Nuevo y otro Terminado.

Los cinco estados de este diagrama son los siguientes:
1. Ejecución: el proceso está actualmente en ejecución (posee todos los recursos,

incluida la CPU).
2. Listo (o preparado): el proceso está listo para ser ejecutado, sólo está

esperando que el planificador así lo disponga y le entregue la CPU.
3. Bloqueado (o suspendido): el proceso no se puede ejecutar hasta que no se

produzca cierto suceso, como una operación de Entrada/Salida, una señal de
sincronización…

4. Nuevo: el proceso se acaba de crear y todavía no fue admitido por el sistema
operativo. En general, los procesos que se encuentran en este estado todavía no
fueron cargados en la memoria principal.

5. Terminado: el proceso fue expulsado del grupo de procesos ejecutables, ya sea
porque terminó o por algún fallo, como un error de protección, aritmético, etc.

Algunos autores consideran otro estado Inactivo, sin embargo, este estado representa
procesos no conocidos por el sistema operativo, por lo que, estrictamente no es un
estado del proceso dentro del S.O.

Los nuevos estados Nuevo y Terminado son útiles para la gestión de procesos. En este
modelo los estados Bloqueado y Listo tienen ambos una cola de espera. Cuando un
nuevo proceso es admitido por el sistema operativo, se sitúa en la cola de ‘listos’. A falta
de un esquema de prioridades ésta puede ser una cola FIFO. Los procesos suspendidos
son mantenidos en una cola de bloqueados. Cuando se produce el evento que estaban
esperando, esos procesos se pasan a la cola de ‘listos’.

Si existe un esquema con diferentes niveles de prioridad de procesos es conveniente
mantener varias colas de procesos listos, una para cada nivel de prioridad, lo que ayuda
a determinar cuál es el proceso que más conviene ejecutar a continuación.

http://www.monografias.com/trabajos34/planificacion/planificacion.shtml
http://www.monografias.com/trabajos11/basda/basda.shtml
http://www.monografias.com/trabajos14/flujograma/flujograma.shtml
http://www.monografias.com/trabajos16/memorias/memorias.shtml
http://www.monografias.com/trabajos14/dinamica-grupos/dinamica-grupos.shtml
http://www.monografias.com/trabajos15/sistemas-control/sistemas-control.shtml

Cuerpo de Técnicos Auxiliares de Informática

de la Administración del Estado

opositaonline.com

info@opositaonline.com

13

PROCESOS EN ESPERA

Dos o más procesos pueden cooperar mediante señales de forma que uno obliga a
detenerse a los otros hasta que reciban una señal para continuar. Se usa una variable
llamada semáforo para intercambiar señales.

Si un proceso está esperando una señal, se suspende (WAIT) hasta que la señal se envíe
(SIGNAL). Se mantiene una cola de procesos en ESPERA en el semáforo. La forma de
elegir los procesos de la cola en ESPERA es mediante una política FIFO.

La sincronización explícita entre procesos es un caso particular del estado
"bloqueado". En este caso, el suceso que permite desbloquear un proceso no es una
operación de entrada/salida, sino una señal generada a propósito por el programador
desde otro proceso.

Bloque de Control de Procesos

Para llevar a cabo la gestión de un proceso, es necesario que el sistema operativo
guarde cierta información necesaria. El sistema operativo almacena toda la información
que necesita relativa a los procesos en el denominado Bloque de Control de Procesos.

Cada vez que el sistema operativo crea un nuevo proceso se genera el PCB
correspondiente que sirve de descripción en tiempo de ejecución durante el tiempo que
dura el proceso. Los procesos son conocidos para el sistema operativo y, por tanto,
elegibles para competir por los recursos del sistema sólo cuando existe un BCP activo
asociado a ellos. Cuando el programa termina, el BCP es eliminado para dejar espacio
libre en el registro, y usarlo para almacenar otros BCP.

El bloque de control de procesos difiere mucho de un sistema a otros, pero existen
contenidos comunes:
 Identificador del proceso: identifica de forma unívoca al proceso en el sistema,

generalmente se emplea un entero sin signo que se denomina PID (Process
IDentifier)

 Estado del proceso para el planificador de procesos: preparado, activo,
bloqueado…

 Contador del programa: dirección de la siguiente instrucción a ejecutar.
 Registros de la CPU: contenidos al final de la última ejecución (contador de

programa, puntero a pila, registros de datos, etc.).
 Contexto de la ejecución: valor de los registros del procesador, bits de estados,

etc. Esto es, cada vez que se ejecuta el planificador y se realiza una conmutación de
procesos, la información sobre en qué lugar se encontraba la ejecución del
proceso se encuentra guardada aquí, así como el lugar en el que se paró la
ejecución del anterior proceso (cada una en su respectivo BCP).

 Información de planificación de la CPU: prioridad, apuntadores a las colas,
algoritmo usado...

 Información contable y de identificación: número de proceso, tiempo real y de
CPU utilizado.

 Información estado E/S: solicitudes E/S pendientes, lista archivos abiertos, etc.
 Aspectos relacionados con la administración de memoria: tales como el espacio de

direcciones y la cantidad de memoria asignada a un proceso.
 Aspectos relacionados con la administración de ficheros: tales como los ficheros

con los que el proceso está actualmente operando.

http://www.monografias.com/trabajos36/signos-simbolos/signos-simbolos.shtml
http://www.monografias.com/trabajos56/semaforos-ecologicos-inteligentes/semaforos-ecologicos-inteligentes.shtml
http://www.monografias.com/guias/foros/
http://www.monografias.com/Politica/index.shtml

Tema II - 04

Sistemas operativos

14

www.facebook.com/opositaonline

youtube.com/opositaonline

 Los procesadores en los que el proceso puede ejecutarse: en caso de soportar el
sistema multiprocesador.

 En el caso de un sistema operativo tipo UNIX: el proceso padre de dicho proceso y
la relación de procesos hijos.

 Estadísticas temporales: tiempo de lanzamiento del proceso, tiempo en estado
activo, etc.

 Prioridad del proceso: cada proceso tiene asignada una prioridad de forma que, en
cualquier instante, el proceso que mayor prioridad tiene asignada, de entre los que
están en estado Esperando, es el que se ejecutará.

 Recursos asociados al proceso: como ficheros, semáforos, etc.

El sistema operativo crea listas de BCP agrupados por el estado de los procesos: una
lista para procesos preparados, otra de procesos bloqueados o suspendidos…

¿Cuándo acaba un proceso?

Todos los sistemas operativos deben tener un mecanismo para identificar cuándo
termina un proceso. Si se trata de un script o un proceso por lotes concluirá cuando
acaben sus instrucciones o cuando se encuentre una orden de parada. Si es un proceso
interactivo, será el usuario el que elija el momento de terminar.

Además, un proceso puede verse interrumpido abruptamente por diversos motivos.
Entre ellos, podemos encontrar los siguientes:
 Sobrepasar el tiempo de ejecución asignado al proceso (tiempo real, de uso del

procesador, etc.) o el tiempo máximo de espera ante un suceso.
 No disponer de memoria suficiente para satisfacer las solicitudes del proceso
 Que el proceso trate de acceder a posiciones de memoria o recursos del sistema

que no tiene autorizados.
 Que una de sus instrucciones contenga un error aritmético o los datos no sean del

tipo o tamaño adecuado.
 Que surja un error en una operación de entrada/salida (no existe un archivo, se

produce un error de lectura, etc.)
 Que una instrucción del programa no exista en el juego de instrucciones o que sea

una instrucción reservada al sistema operativo.
 Que el sistema operativo, el usuario o el proceso padre decida terminarlo.

También suelen terminar los procesos hijos cuando termina el proceso padre.

Lógicamente, cuando un proceso termina, abandona su estado (En ejecución,
Preparado, Bloqueado) y es eliminado de la cola o colas que dependan del Distribuidor.

Planificación de procesos

Los sistemas operativos cuentan con un componente llamado planificador, que se
encarga de decidir cuál de los procesos hará uso del procesador. La toma de esta
decisión, así como el tiempo de ejecución del proceso, estará dada por un algoritmo,
denominado Algoritmo de Planificación.

La Planificación de procesos tiene como principales objetivos:
 Equidad: todos los procesos deben ser atendidos.
 Eficacia: el procesador debe estar ocupado el 100% del tiempo.

Cuerpo de Técnicos Auxiliares de Informática

de la Administración del Estado

opositaonline.com

info@opositaonline.com

15

 Tiempo de respuesta: el tiempo empleado en dar respuesta a las solicitudes del
usuario debe ser el menor posible.

 Tiempo de espera: reducir al mínimo el tiempo de espera de los resultados
esperados por los usuarios por lotes.

 Rendimiento: maximizar el número de tareas que se procesan por cada hora.

Tipos de planificación

Podemos hablar de tres tipos principales de planificación:
1. A largo plazo: sus objetivos son añadir nuevos procesos al sistema, tomándolos de

la lista de espera y dar al planificador a corto plazo una mezcla equilibrada de
trabajos. Este tipo de planificación era el más frecuente en los sistemas de lotes y
multiprogramados en lotes; las decisiones se toman considerando los requisitos
pre-declarados de los procesos y los que el sistema tenía libres al terminar algún
otro proceso. La planificación a largo plazo puede llevarse a cabo con periodicidad
de una vez cada varios segundos, minutos e inclusive horas.
En los sistemas interactivos, casi la totalidad de los que se usan hoy en día, este
tipo de planificación no se efectúa, dado que es normalmente el usuario quien
indica expresamente qué procesos iniciar.

2. A medio plazo: decide qué procesos es conveniente bloquear en determinado
momento, sea por escasez/saturación de algún recurso (como la memoria
primaria) o porque están realizando alguna solicitud que no puede satisfacerse
momentáneamente; se encarga de tomar decisiones respecto a los procesos
conforme entran y salen del estado de bloqueado (aquellos que están a la espera
de algún evento externo o de la finalización de transferencia de datos con algún
dispositivo). Añade o elimina procesos de memoria principal modificando, por
tanto, el grado de multiprogramación.

3. A corto plazo (planificador de la CPU): decide cómo compartir en todo momento
la CPU entre todos los procesos que requieren de sus recursos. La planificación a
corto plazo se lleva a cabo decenas de veces por segundo (razón por la cual debe
ser código muy simple, eficiente y rápido); es el encargado de planificar los
procesos que están listos para ejecución.
El planificador a corto plazo puede ser invocado cuando un proceso se encuentra
en algunas de las cuatro siguientes circunstancias:

1º. Pasa de estar ejecutando a estar en espera (por ejemplo, por solicitar una
operación de E/S, esperar a la sincronización con otro proceso, etc.)

2º. Pasa de estar ejecutando a estar listo (por ejemplo, al ocurrir una
interrupción)

3º. Deja de estar en espera a estar listo (por ejemplo, al finalizar la operación de
E/S que solicitó)

4º. Finaliza su ejecución, y pasa de ejecutando a terminado

Algoritmos de planificación

Primero en llegar, primero en ser servido (FCFS)
El esquema más simple de planificación es el Primero en llegar, primero en ser servido
(First come, first serve, FCFS). En este algoritmo cada proceso se ejecuta en el orden en
que llega, y mantiene el procesador hasta que finaliza su ejecución. El ‘despachador’ es
muy simple, básicamente una cola FIFO.

Tema II - 04

Sistemas operativos

16

www.facebook.com/opositaonline

youtube.com/opositaonline

Consideremos los siguientes procesos:

Si bien un esquema FCFS reduce al mínimo la sobrecarga administrativa (que incluye
tanto el tiempo requerido por el planificador para seleccionar al siguiente proceso, como
el tiempo requerido para el cambio de contexto), el rendimiento percibido por los
últimos procesos en llegar (o por procesos cortos llegados en un momento
inconveniente) resulta inaceptable.

FCFS tiene características claramente inadecuadas para trabajo interactivo, sin embargo,
al no requerir de hardware de apoyo (como un temporizador) sigue siendo ampliamente
empleado

Ronda (Round Robin)
El esquema ‘ronda’ busca dar una relación de respuesta buena, tanto para procesos
largos, como para los cortos. La principal diferencia entre la ‘ronda’ y FCFS es que en
este caso a cada proceso que esté en la lista de procesos listos, lo atenderemos durante
un período de tiempo fijo o quantum (q). Si un proceso no ha terminado de ejecutar al
final de su quantum, será interrumpido y puesto al final de la lista de procesos listos,
para que espere a su turno nuevamente. Los procesos que nos entreguen los
planificadores a mediano o largo plazo se agregarán también al final de esta lista.

Con la misma tabla de procesos que encontramos en el caso anterior (y, por ahora,
ignorando la sobrecarga administrativa provocada por los cambios de contexto),
obtendríamos los siguientes resultados:

Cuerpo de Técnicos Auxiliares de Informática

de la Administración del Estado

opositaonline.com

info@opositaonline.com

17

Ronda (Round Robin), con q=1

La ronda puede ser ajustada modificando la duración de quantum. Conforme
incrementamos el quantum, la ronda tiende a convertirse en FCFS. Si cada quantum es
arbitrariamente grande, todo proceso terminará su ejecución dentro de su quantum; por
otro lado, conforme decrece q, mayor frecuencia de cambios de contexto tendremos. Si
repetimos el análisis anterior bajo este mismo mecanismo, pero con un quantum de 4
ticks, tendremos:

Ronda (Round Robin), con q=4

Si bien aumentar el quantum mejora los tiempos promedio de respuesta, aumentarlo
hasta convertirlo en un FCFS efectivo degenera en una penalización a los procesos
cortos. Silberschatz apunta a que, en general, el quantum debe mantenerse inferior a la
duración promedio del 80% de los procesos.

Tema II - 04

Sistemas operativos

18

www.facebook.com/opositaonline

youtube.com/opositaonline

El proceso más corto a continuación (SPN)
Cuando no tenemos la posibilidad de implementar multitarea preventiva, pero
requerimos de un algoritmo más justo, y contamos con información por anticipado del
tiempo que requieren los procesos que forman la lista, podemos elegir el más corto de
los presentes.

Ahora bien, es muy difícil contar con esta información antes de ejecutar el proceso. Es
más frecuente buscar caracterizar las necesidades del proceso: ver si durante su historia
de ejecución ha sido un proceso tendiente a manejar ráfagas limitadas por entrada-salida
o limitadas por procesador, y cuál es su tendencia actual.

Empleando el mismo juego de datos de procesos que hemos venido manejando como
resultados de las estimaciones, obtendríamos el siguiente resultado:

El proceso más corto a continuación (SPN)

Como era de esperarse, SPN favorece a los procesos cortos. Un proceso largo puede
esperar mucho tiempo antes de ser atendido. En un sistema poco ocupado, en que la
cola de procesos listos es corta, SPN generará resultados muy similares a los de FCFS.

Menor tiempo restante a continuación (SRTN)
El siguiente proceso a ejecutar será al que le quede menor tiempo de ejecución. Este
tipo de planificación es óptima, cuando se conocen con antelación los futuros tiempos
de ejecución de los procesos.

Planificación por prioridad fija
En este tipo de planificación a cada proceso se le asigna una prioridad siguiendo un
criterio determinado, y de acuerdo con esa prioridad será el orden en que se atienda
cada proceso.
Planificación garantizada
Para realizar esta planificación el sistema tiene en cuenta el número de usuarios que
deben ser atendidos. Para un número "n" de usuarios se asignará a cada uno un tiempo
de ejecución igual a 1/n.

Cuerpo de Técnicos Auxiliares de Informática

de la Administración del Estado

opositaonline.com

info@opositaonline.com

19

Planificación de Colas Múltiples
El nombre se deriva de MQS (Multilevel Queue Schedulling). En este algoritmo la cola de
procesos que se encuentran en estado de listos es dividida en un número determinado
de colas más pequeñas. Los procesos son clasificados mediante un criterio para
determinar en qué cola será colocado cada uno cuando quede en estado de listo. Cada
cola puede manejar un algoritmo de planificación diferente a las demás.

Sincronización de procesos

Dentro de los Sistemas Operativos los procesos que se ejecutan son muy variados,
algunos utilizan la CPU para realizar de lectura de memoria, u otros campos que
competen a la aplicación. Otros pueden intentar modificar los datos que leen. Pero, ¿qué
sucede si dos o más procesos tienen que hacer estas operaciones simultáneamente? Es
decir, por ejemplo, modificar los datos que un proceso está leyendo.

Pues es aquí donde puede ‘provocarse un caos’, pues la información podría ser
modificada sin previo aviso o suceder acciones que no estaban planteadas. Para esto se
plantea la Sincronización de Procesos.

Esto consiste en utilizar estructuras algorítmicas que permitan implementar el control
de los procesos o hilos que se van a ejecutar de acuerdo a condiciones dadas, para que
no se produzca situaciones como Bloqueos, Bloqueos mutuos o accesos a secciones
críticas del programa que no pueden ser accedidas en ese momento.

Un sistema operativo multiprogramado es un caso particular de sistema concurrente
donde los procesos compiten por el acceso a los recursos compartidos o cooperan
dentro de una misma aplicación para comunicar información. Ambas situaciones son
tratadas por el sistema operativo mediante mecanismos de sincronización que permiten
el acceso exclusivo de forma coordinada a los recursos y a los elementos de
comunicación compartidos.

Según el modelo de sistema operativo descrito anteriormente, basado en colas de
procesos y transiciones de estados, los procesos abandonan la CPU para pasar a estado
bloqueado cuando requieren el acceso a algún dispositivo, generalmente en una
operación de E/S, pasando a estado preparado cuando la operación ha concluido y
eventualmente volver a ejecución. La gestión de estos cambios de estado, es decir, los
cambios de contexto, es un ejemplo de sección crítica de código dentro del sistema
operativo que debe ser ejecutada por éste en exclusión mutua. Otros ejemplos de
código que debe protegerse como sección crítica incluyen la programación de los
dispositivos de E/S y el acceso a estructuras de datos y buffers compartidos.

Es necesario utilizar mecanismos de sincronización explícitos para garantizar acceso
exclusivo a las variables compartidas y evitar situaciones de bloqueo. Puede producirse
una condición de bloqueo sobre una variable cuando varios procesos acceden
concurrentemente a la variable para actualizarla

SECCIÓN CRÍTICA

El modelo de sección crítica que vamos a utilizar sigue el siguiente protocolo genérico:

Entrar_SC(esta_SC) /* Solicitud de ejecutar esta_SC */

Tema II - 04

Sistemas operativos

20

www.facebook.com/opositaonline

youtube.com/opositaonline

/* código de esta_SC */
Dejar_SC(esta_SC) /* Otro proceso puede ejecutar esta_SC */

Es decir, cuando un proceso quiere entrar a la sección crítica:

1. Ejecuta Entrar_SC(), y si la sección crítica está ocupada el proceso espera;
2. Ejecuta la sección crítica;
3. Ejecuta Dejar_SC(), permitiendo que entre uno de los procesos en espera.

Propiedades del acceso exclusivo a secciones críticas

Como criterios de validez de un mecanismo de sincronización nos referiremos al
cumplimiento de las siguientes condiciones:

1. Exclusión mutua: no puede haber más de un proceso simultáneamente en la SC.
2. No debe existir interbloqueo: ningún proceso fuera de la SC puede impedir que

otro entre a la SC.
3. No se permite la espera indefinida: un proceso no puede esperar por tiempo

indefinido para entrar a la SC.
4. Independencia del hardware: no se pueden hacer suposiciones acerca del número

de procesadores o de la velocidad relativa de los procesos.

SEMÁFOROS

Una abstracción más general es el semáforo, que permite, sobre la base de las
primitivas de dormir y despertar, almacenar los eventos ya producidos y despertar un
único proceso bloqueado cuando se produce un evento pendiente.

Un semáforo lleva asociada una cola de procesos bloqueados en él y una cuenta de
señales de despertar recibidas s, lo que permite su utilización general para gestionar
recursos, como vamos a ver.

Se definen dos operaciones atómicas sobre un semáforo, s:

espera(s) — también: p(s), down(s), wait(s), ...
señal(s) — también: v(s), up(s), signal(s), ...

Cuando un proceso ejecuta espera(s), si la cuenta asociada a s es mayor que cero el
proceso continúa y la cuenta se decrementa; en caso contrario, el proceso se bloquea.
Cuando un proceso ejecuta señal(s), se incrementa la cuenta; si hay procesos
bloqueados despierta a uno.

Un semáforo cuya variable solo puede tomar los valores 0 y 1 se llama semáforo
binario.

MONITORES

Son módulos que encierran los recursos o variables compartidas como componentes
internos privados y ofrece una interfaz de acceso a ellos que garantiza el régimen de
exclusión mutua.

La declaración de un monitor incluye:
 Declaración de las constantes, variables, procedimientos y funciones que son

privados del monitor (solo el monitor tiene visibilidad sobre ellos).

